孕育发生伯努利征象的基础缘故原由是什么?_怪人怪事

孕育发生伯努利征象的基础缘故原由是什么?

怪人怪事 2023-05-05 09:18www.bnfh.cn怪人怪事

产生伯努利现象的根本原因是什么?

这确实是个比较坑人的问题。

我说它坑人,是因为答案明明很简单,却被某些资料(比如初中物理课本)宣传成了让人百思不得其解的现象。

根本原因一点都不神秘,简单点说就是力可以让物体加速

如果你看到这里还是一头雾水,请往下看,你需要了解一些物理常识。

如果一小块流体左右两边的压强是左边大、右边小,那么

  • 流体从左往右流,就会加速,让流速是左边慢、右边快。
  • 流体从右往左流,就会减速,依旧让流速是左边慢、右边快。

是不是很简单?

其实就是牛顿第二定律,可以从中推导出伯努利方程,下面会简单谈谈推导过程。

面对流体运动的各种现象,很多人会滥用“伯努利原理”这个词,通常是会忽略“同一条流线”这个条件。

顺便提一个真正反映伯努利原理的现象文丘里管(就像下面的图片)。

这是真的在反映同一条流线上的压强大小。

伯努利方程

下文可能有些硬核,请酌情跳过。

物理学是一个环环相扣的体系,可以用牛顿第二定律推导出伯努利方程的部分结论,在这里简单谈一谈。

选取一块微小的流体区域(通常都选成正方体),各个方向都受到压力。选择一个方向,可以写出微小流体在这个方向上受到的“净压力”或“合力”。

流体内的压强不只在一个方向上变化,所以压强是个多元函数,在上面的式子里,应该对压强求偏导数。

然后就可以套用牛顿第二定律

压强、速度、密度都是多元函数,不仅随时间变化,还随空间变化,只考虑这些物理量在一条流线上的变化

把上面式子里的速度的全导数展开成随体导数

就能得到

如果是定常流动,速度不随时间变化,只随空间变化

简单地算一下不定积分,就能得到伯努利方程的一部分结论。

一点补充欧拉方程

“欧拉方程”也是个多义词,这里说的是流体力学中的欧拉方程。

其实上面已经出现了简化的欧拉方程,也就是这个式子

上面的式子是一维的欧拉方程,用完整的欧拉方程可以推导出完整的伯努利方程,只需要给上面的式子加一个“体积力”,并写成三维形式。

“体积力”是和“表面力”对应的力。

  • 表面力就是我们熟悉的压力、摩擦力,力的作用点在物体的表面。
  • 体积力的作用点渗透到一切有质量的区域,重力就是典型的体积力。

把重力加入欧拉方程,就能推导出完整的伯努利方程,在这里就不多提了。

欧拉方程其实就是对牛顿第二定律的应用,或者说是把牛顿第二定律的应用对象,从质点推广到流体。

一点补充N-S方程

上面的欧拉方程只是在描述“无粘性、不可压缩”的理想流体。

纳维-斯托克斯方程(N-S方程)其实就是在欧拉方程的基础上,增加了一个粘性项,描述了有粘性的流体。

这个方程很出名,主要是因为这个方程很难求解,数学界的“七大千禧难题”之中就有一个问题和N-S方程有关。

其实还可以对N-S方程升级,描述可压缩的流体,这会让方程更复杂,在这里就不写了。

不管怎么变,这些方程的基本框架始终是牛顿第二定律,也就是关于动量的方程。

一点补充事情并不简单

写了不少内容,还有不少方程,但这些方程都不能完全描述流体的运动。

流体的运动依然是人类知之甚少的现象,关于流体速度和压强的关系,伯努利方程讨论过,但只是在层层限制条件之后讨论的。

跳出伯努利方程的限制条件,流体速度和压强的关系依旧是个谜。

面对自然界,不懂就是不懂,有些流体运动确实还让人无法理解。




改良伯努利(Daniel Bernoulli)方程目前在医学实践中用得最多,可以通过测定病人血管里的血流速度,推算血管内压力,这可比传统医学的号脉精准多了!




我先粘一段标准回答

伯努利原理

伯努利原理,其实质是流体的机械能守恒,简单的说就是动能+重力势能+压力势能=常数,并且有个著名的推论等高流动时,流速大,压力就小。

伯努利原理是在1726年由丹尼尔·伯努利提出的,也是由他的名字命名而成的。

伯努利原理往往被表述为p+1/2ρv²+ρgh=C,这个式子被称为伯努利方程。式中p为流体中某点的压强,v为流体该点的流速,ρ为流体密度,g为重力加速度,h为该点所在高度,C是一个常量。它也可以被表述为p1+1/2ρv1²+ρgh1=p²+1/2ρv2²+ρgh²。

特别说明

使用伯努利定律必须符合以下假设,方可使用;如没完全符合以下假设,所求的解也是近似值。

  1. 定常流在流动系统中,流体在任何一点之性质不随时间改变。
  2. 不可压缩流密度为常数,在流体为气体适用于马赫数(Ma)<0.3。
  3. 无摩擦流摩擦效应可忽略,忽略黏滞性效应。
  4. 流体沿着流线流动流体元素沿着流线而流动,流线间彼此是不相交的。


我个人的观点,以上解释是很粗糙的,因为对流体做了大量的简化处理,很难说这些简化处理是合适的。

我个人观点(民科),伯努利原理是流体热力学现象的特例。因为,流体是原子构成的,温度是原子振动强度的体现。因为流体中各个原子的振动方向是随机的。所以当固体和流体有速度差时,从固体上观测,流体的原子振动的向量累加是有方向和速度的。因为流体温度不变,所以相对于法向的振动量必然降低,从而压力降低。




根本原因是能量守恒。一段流体从慢速区域流入快速区域,慢速区域的压强对其做正功,快速区域的压强对其做负功。而因为这段流体的速度上升,动能增加,所以正功必然大于负功,从而可推导出快速区域的压强较小。




不摆公式,我也不懂,说说基本物理直觉,给个定性分析。气体分子是在当前温度条件下随机运动,意思是,像个乒乓球一样前后左右上下跳动,不撞南墙不回头,就像气球里的气体,没事捶几下气球内壁,保持气球内部压强,就鼓起来了。流体差不多,运动速度慢的无方向差别到处乱撞,运动速度快的横向撞击概率少,因为上一次撞击和下一次撞击跟刻舟求剑距离差不多了,管壁或者流线之外的空间锤的少了,所谓压强就低了

Copyright © 2016-2025 www.bnfh.cn 怪异网 版权所有 Power by